On the number of Fourier coefficients that determine a Hilbert modular form

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Fourier coefficients of nonholomorphic Hilbert modular forms of half-integral weight

Let f(z) = ∑ n≥1 ane 2πinz be a Hecke eigenform of half-integral weightm+1/2, and let g(z) = ∑ n≥1 bne 2πinz be the corresponding even-weight form, in the sense of [Sh 73]. In particular, g has weight 2m, and belongs to the same eigenvalues of Hecke operators as f . If n = qr with squarefree r, then an is expressible in terms of ar and the {bj}. At the end of [Sh 77], Shimura suggested that ar ...

متن کامل

Fourier Coefficients of Modular Forms

These notes describe some conjectures and results related to the distribution of Fourier coefficients of modular forms. This is a rough draft and these notes should forever be considered incomplete.

متن کامل

Oscillations of Fourier Coefficients of Modular Forms

a(p) = 2p~ @ ) cos 0(p). Since we know the truth of the Ramanujan-Petersson conjecture, it follows that the 0(p)'s are real. Inspired by the Sato-Tate conjecture for elliptic curves, Serre [14] conjectured that the 0(p)'s are uniformly distributed in the interval [0, rc] with respect to the 1 measure -sin2OdO. Following Serre, we shall refer to this as the Sato-Tate r~ conjecture, there being n...

متن کامل

Divisors of Fourier coefficients of modular forms

Let d(n) denote the number of divisors of n. In this paper, we study the average value of d(a(p)), where p is a prime and a(p) is the p-th Fourier coefficient of a normalized Hecke eigenform of weight k ≥ 2 for Γ0(N) having rational integer Fourier coefficients.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2002

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-02-06609-1